- Земной год
- Фотографии в высоком разрешении
- Солнце в жизни Земли
- Зимние пейзажи на фото
- Строение Солнца
- Внутреннее строение Солнца
- Ядро
- Зона лучистого переноса
- Зона конвективного переноса
- Атмосфера
- Фотосфера
- Хромосфера
- Корона
- Единственная звезда Солнечной системы
- Жизненный цикл Солнца
- Солнечные затмения
- Общая характеристика
- Таблица “Основные физические характеристики Солнца”
- Решения
- Перейти в тень
- Снять силуэт
- Отражатель
- HDR
- Исследование Солнца
Земной год
Вокруг Солнца наша планета движется на скорости около 30 км/с и период полного её оборота равняется одному году (длина орбиты составляет более 930 млн. км). В точке, где солнечный диск находится ближе всех к Земле, нашу планету от звезды отделяет 147 млн. км, а в наиболее удалённой точке – 152 млн. км.
Происходит это из-за того, что угол отклонения оси Земли от перпендикуляра к плоскости орбиты составляет около 23,5 градусов, а поскольку наша планета вращается вокруг Солнца, лучи Солнца ежедневно и ежечасно (не считая экватора, где день равен ночи) меняют угол своего падения в одной и той же точке.
Летом в северном полушарии наша планета наклонена в сторону Светила, а потому лучи Солнца освещают земную поверхность максимально интенсивно. А вот зимой, поскольку путь солнечного диска по небу проходит очень низко, луч Солнца падает на нашу планету под более крутым углом, а потому земля прогревается слабо.
Средняя температура устанавливается, когда наступает осень или весна и Солнце расположено на одинаковом расстоянии по отношению к полюсам. В это время ночи и дни имеют приблизительно одинаковую продолжительность – и на Земле создаются климатические условия, являющие собой переходной этап между зимой и летом.
Поэтому, когда наступает весна, то Солнце приближается ко дню весеннего равноденствия, продолжительность дня и ночи становится одинаковой. Летом, 21 июня, в день летнего солнцестояния, солнечный диск достигает наивысшей точки над горизонтом.
Фотографии в высоком разрешении
29 апреля 2015 года удалось наблюдать за активными вспышками на Солнце. Для этого использовали три телескопа: высокоэнергетические рентгеновские лучи от NuSTAR (синий, 2-6 кэВ), низкоэнергетические от Hinode (зеленый, 0.2-2.4 кэВ) и УФ-свет от Обсерватории Солнечной Динамики (желтый и красный, 171 и 193 ангстрем).
Фото Солнца от NuSTAR представляет собою мозаику, выполненную при слиянии меньших кадров.
В активных солнечных участках располагается разогретый до нескольких миллионов градусов материал. Сине-белые части от NuSTAR указывают на более энергичные локации. В период наблюдения не зафиксировали микрофлары – меньшие версии крупных вспышек. Они стремительно высвобождают энергию и раскаляют материал.
Обычно NuSTAR всматривается в пространство, чтобы следить за рентгеновским излучением от сверхновых, черных дыр и прочих экстремальных объектов. Но ему также удается без вреда наблюдать за Солнцем и получать снимки высокоэнергетического рентгеновского излучения с большей чувствительностью, чем было доступно раньше.
Это изображение добыто 20 апреля 2015 года Обсерваторией Солнечной Динамики. Яркие пятна и дуги в атмосферном слое именуются активными областями. Здесь присутствует причудливая и мощная магнитная активность, способная иногда вызывать солнечные извержения, вроде вспышек и высвобождения корональной массы.
Образ создан через слияние 54 наблюдений (с 17 августа по 4 октября) за внешней солнечной атмосферой с нагревом в 10 млн. градусов (корона). Наиболее ярким кажется то, как именно сосредоточена активность в горизонтальных линиях выше и ниже экватора. Эти «рабочие пояса» приближаются к полюсам и постепенно смещаются в низкие широты в период 11-летнего цикла. Сейчас мы прибываем в максимальной фазе с огромным количеством активных точек в 15 градусах выше и ниже экваториальной зоны. В ближайшие годы активность перейдет ближе к экватору и цикл запустится заново.
Солнечными поясами управляет динамо, генерирующее магнитное поле и формирующее интересные события. Но динамо – загадочная особенность. Его база напоминает электромагнитную. Электрическим током выступает вращающаяся вокруг внутренней части плазма.
24 февраля 2014 года удалось зафиксировать примечательную вспышку на Солнце. Фото сделала Обсерватория Солнечной Динамики, которая постоянно изучает активность нашей звезды. Мы видим первые моменты события Х-класса в различных длинах волн света. Отмечено в виде яркого пятна на левой стороне. Раскаленный материал парит над короной.
Солнечные вспышки – мощные всплески лучей, появляющиеся в виде масштабных световых выбросов. Они не могут пробиться сквозь земную атмосферу и негативно повлиять на нашей здоровье. Но в периоды интенсивности способны повредить функциональность орбитальных механизмов.
26-28 мая 2015 года удалось запечатлеть на фото сбалансированную боковую структуру в солнечной короне. Казалось, что в середине она исчезла, но затем снова прояснилась и повысила свою яркость. Активность отображена в УФ-свете Обсерваторией Солнечной Динамики.
7 ноября 2014 года Солнце выпустило яркую вспышку класса Х1.6 на правой стороне фотографии звезды. Снимок удалось запечатлеть в Обсерватории Солнечной Динамики. Здесь показан крайний УФ-свет в 131 ангстрем, выделяющий интенсивный раскаленный материал.
17 января 2013 года Обсерватория Солнечной Динамики сумела зафиксировать одну из многочисленных струй в комбинации трех длин волн света. Для корректировки использовали красный, зеленый и синий цвета.
На 10 сентября 2017 года пришлась значительная солнечная вспышка. Обсерватория Солнечной динамики все время следит за звездой, поэтому получила этот кадр. Солнечные вспышки представляют собою сильные всплески лучей. Физически они не способны пробиться сквозь земную атмосферу, поэтому не сказываются негативно на здоровье. Но могут при большой мощности повредить работу спутников.
Конкретная вспышка относится к классу Х8.2. «Х» отмечает наиболее сильные вспышки, а число конкретизирует мощность. Расположена в активном регионе 2673, найденном 29 августа. Полюбуйтесь на остальные фото Солнца.
.
Фотографии космоса |
Солнце в жизни Земли
Солнце и Земля настолько связаны друг с другом, что роль самой крупной звезды на небе трудно переоценить. Прежде всего, вокруг Солнца образовалась наша планета и появилась жизнь. Также энергия Солнца согревает Землю, луч Солнца освещает её, формируя климат, охлаждая её ночью, а после того, как Солнце всходит, снова согревает её. Что говорить, даже воздух с его помощью приобрёл свойства, необходимые для жизни (если не луч Солнца, он представлял бы собой жидкий океан из азота, окружающий глыбы льда и промёрзшую сушу).
Солнце и Луна, являясь крупнейшими объектами на небосводе, активно взаимодействуя друг с другом, не только освещают Землю, но и прямо влияют на движение нашей планеты – ярким примером этого действия являются приливы и отливы. На них воздействует Луна, Солнце в этом процессе находится на вторых ролях, но без его влияния тоже не обходится.
Солнце и Луна, Земля и Солнце, воздушные и водные потоки, окружающая нас биомасса, являются доступным, постоянно возобновляющимся энергетическим сырьём, который можно легко использовать (оно лежит на поверхности, его не нужно добывать из недр планеты, оно не образует радиоактивных и токсичных отходов).
Чтобы обратить внимание общественности на возможность использования возобновляемых источников энергии, с середины 90-х гг. прошлого столетия было принято решение отмечать Международный день Солнца
Таким образом, ежегодно, 3 мая, в день Солнца по всей территории Европы проводят семинары, выставки, конференции, направленные на то, чтобы показать людям, как можно использовать луч светила во благо, как определить время, когда происходит закат или рассвет Солнца.
Например, в день Солнца можно побывать на специальных мультимедийных программах, увидеть в телескоп огромные области магнитных возмущений и различные проявления солнечной активности. В день Солнца можно посмотреть на различные физические опыты и демонстрации, наглядно демонстрирующие, насколько мощным источником энергии является наше Светило. Нередко в День Солнца посетители получают возможность создать солнечные часы и проверить их в действии.
Зимние пейзажи на фото
Посмотрите эти фото зимних пейзажей, а также различных предметов на зимнем фоне.
Красивый зимний натюрморт с елью, хвоей, шишкой.
Красивый зимний пейзаж с арочным мостом и снежными шапками на камнях
Зимний пейзаж с белоснежными деревьями и водопадом горячих источников у их основания.
А эта картинка для тех, кто предпочёл бы зимовать за городом.
Снятая на особый объектив фотография.В фокусе находится скала, занесённая снегом у подножия
Много снега, много ёлок и необычное небо делают эту картинку неплохим претендентом попасть к вам на телефон
Зимняя дорога домой
Красивый пейзаж с алыми сумерками на озере, окруженном снегом
Сказочный пейзаж с принцем на коне, направляющимся к своей принцессе
Свет сквозь деревья проникает на небольшую лужайку. Очень красивая картинка, на наш взгляд.
Картинка, похожая на предыдущую, только уже другие деревья, и возможно, другая речка. Солнце уже село и не так много света.
Обледенелая дорога, над которой нависли зимние деревья. Картинка отлично будет смотреться на телефоне с иконками приложений.
Деревья вокруг бескрайних полей во власти зимы.
Белоснежная дорога, полностью занесённая снегом
Красивая зимняя фотография, сделанная на широкоугольный объектив. В кадр попало как основание дерева, так и его макушка, устремляющаяся в небо.
Заснеженное дерево с лавочкой, готовой к приёму посетителей.
А на этой аллее лавочек и деревьев куда больше, да и снега хватает.
Фонарь у лавочки в парке красиво подсвечивает падающий на землю снег
Снег на хвойной ветке
Голубое небо и дорога, заметённая свежевыпавшим снегом. Редкая красота!
Белоснежные ветви деревьев, устремленные к голубому небу
Зимой можно жечь свечи на ветвях деревьев, ведь снега много и пожара не случится, можно просто наслаждаться красотой. Не повторять то же самое летом!
Так приятно наблюдать за снегопадом, сидя дома в тепле, с пледом и горячим напитком. Вы можете увидеть похожую картину
Лавочка на аллее в большом городе. Всё заметено снегом, на деревьях развешены гирлядны. Очень красиво.
Музыканты — креативные личности. Придумали сделать такой прикольный рисунок с помощью снега. Угадайте, какой инструмент изображен на этой зимней картинке?
Верхушка ёлки в снегу, а на заднем плане голубое небо
Высокое вековое дерево в зимнем лесу
Красивый зимний город в канун рождества
Берёзовая зимняя аллея, длинная и красивая
Красивое морозное утро в горах
Промёрзшие ветви деревьев
Сказочный пейзаж с Санта-Клаусом, вылетающим на исполнение своей благородной миссии
Гигантские ледяные горы
Зимняя картинка на телефон, залитая оранжевым светом уличного фонаря. Снег валит без остановки уже не один час, постелив ровный слой на лавочку.
Очередная красивая зимняя аллея.
А у вас по пути на дачу зимой есть такие же потрясающие дорожные пейзажи?
Калитка и деревце с гирляндой рядом
Красивая, относительно широкая дорога, над которой нависли заснеженные ветви деревьев
Картинка со своей атмосферой. Одинокий фонарь, лавка на пересечении дорог
Двор в снегу, и гостеприимно открытая калитка.
Картинка с чуть ли не божественным светом за деревьями. Много деревьев и снега на этой зимней картинке.
Ветви деревьев, удерживающие снег и кольцевая автодорога. Красивый зимний пейзаж
На природе зимой невероятно красиво, не так ли?
В городе зимой тоже красиво. Эта фотография снята с берега, так что с фотографом всё в порядке.
Ещё одна зимняя снежная аллея, претендующая на память вашего телефона или карты памяти. Эта картинка в желтых тонах от света фонарей.
Небольшой городок под властью зимы
Город побольше, мужчина идет выбирать подарки на рождество.
Украшенный к новому году городок
Зимние домишки у подножия высоких скал
Красивый зимний парк с часами и высокими зданиями.
Ваша девушка хочет путешествовать, а вы — нет? Тогда не скидывайте ей эту картинку. А то подумает, что все эти достопримечательности в одном месте, и сильно туда захочет
Милые европейские домики в городе, окруженном лесом
Лавочка, деревья, гирлянды, высокое здание на заднем плане. Всё, что нужно для красивой картинки для телефона.
Красивая городская улица во время снегопада.
Наклонённое вправо дерево с красивой кроной.
Дневная красивая аллея.
Солнечные лучши на закате просачиваются сквозь хвою ёлки. Небо радует приятным оранжевым оттенком на этой картинке.
Качественная картинка на телефон с северным сиянием и высокой горой на заднем плане.
Инфернально красное небо над вполне обычным, но красивым зимним пейзажем
Яркая верхушка горы отражается в зеркально гладком озере
Мультяшный зимний пейзаж с деревушкой и церковью
Зимнее красивое кладбище.
Небольшой город, затерявшийся меж голубых заснеженных сосен
Строение Солнца
Схема структуры Солнца. Изображение: Pbroks13 / Wikimedia Commons1-Ядро; 2-Зона лучистого переноса; 3-Зона конвективного переноса; 4-Фотосфера; 5-Хромосфера; 6-Корона; 7-Солнечные пятна; 8-Гранулы; 9-Протуберанец
Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.
Внутреннее строение Солнца
Внутренняя структура нашей звезды включает следующие слои:
Ядро
В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.
Зона лучистого переноса
Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!
Зона конвективного переноса
Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.
Атмосфера
Атмосфера Солнца состоит из следующих слоев:
Фотосфера
Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.
Хромосфера
Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.
Корона
Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.
Единственная звезда Солнечной системы
Возможно, кое-кто удивится, узнав, что Солнце планетой не является. Солнце — это огромный, светящийся, состоящий из газов шар, внутри которого постоянно происходят термоядерные реакции, выделяющие энергию, дающую свет и тепло. Интересно, что подобной звезды в Солнечной системе не существует, а потому оно притягивает к себе все объекты более мелких размеров, оказавшиеся в зоне его гравитации, в результате чего они начинают вращаться вокруг Солнца по траектории.
Естественно, в космосе Солнечная система находится не сама по себе, а входит в состав Млечного пути, галактики, что являет собой огромную звёздную систему. От центра Млечного пути, Солнце отделяет 26 тыс. световых лет, поэтому движение Солнца вокруг него составляет один оборот за 200 млн. лет. А вот вокруг своей оси звезда оборачивается за месяц – и то, данные эти приблизительны: оно являет собой плазмовый шар, составные которого вращаются с разной скоростью, а потому трудно сказать, сколько именно времени уходит на полный оборот. Так, например, в районе экватора это происходит за 25 дней, у полюсов – на 11 дней больше.
Из всех известных на сегодняшний день звёзд, по яркости наше Светило находится на четвёртом месте (когда звезда проявляет солнечную активность, она светит ярче, чем когда спадает). Сам по себе этот огромный газообразный шар белого цвета, но из-за того, что наша атмосфера поглощает волны короткого спектра и луч Солнца у поверхности Земли рассеивается, свет Солнца становится желтоватого оттенка, а белый цвет можно увидеть разве что в ясный погожий день на фоне голубого неба.
Будучи единственной звездой Солнечной системы, Солнце также является единственным источником её света (не считая очень далёких звёзд). Несмотря на то, что Солнце и Луна на небе нашей планеты являются самыми крупными и яркими объектами, разница между ними огромная. Тогда как Солнце само излучает свет, спутник Земли, будучи абсолютно тёмным объектом, просто отражает его (можно сказать, что мы также видим Солнце ночью, когда на небе находится освещённая им Луна).
Светило Солнце – звезда молодая, её возраст, по оценкам учёных, составляет более четырёх с половиной миллиардов лет. А потому относится к звезде третьего поколения, которая была образована из остатков ранее существующих звёзд. Его по праву считают самым большим объектом Солнечной системы, поскольку его вес в 743 раза больше массы всех планет, вращающихся вокруг Солнца (наша планета в 333 тысяч раз легче Солнца и меньше его в 109 раз).
Жизненный цикл Солнца
Жизненный цикл Солнца. Изображение: Айсик Бендер / Wikimedia Commons
Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.
В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.
Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.
Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.
После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.
Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.
Солнечные затмения
Солнечные затмения, пожалуй, самое грандиозное событие на Земле во все времена. В древности, когда Солнце гасло посредине дня, этому приписывали божественное явление и предрекали разные хорошие или плохие события.
Из-за того, что угловые размеры Солнца и Луны удивительным образом совпадают, Солнечное затмение происходит, когда Луна проходит между Солнцем и Землей, закрывая для человечества светило.
Полное Солнечное затмение наблюдается, когда Солнечный диск полностью закрывает Луна. Тогда на некоторое время наступает темнота.
Кольцеобразное затмение происходит, когда луна находится в апогеи (дальше от Солнца), и ее угловой размер чуть меньше Солнечного. Тогда она не полностью закрывает Солнечный диск, оставляя тонкое кольцо.
Частичное затмение происходит, когда Луна лишь немного закрывает Солнце, проходя по его диску.
Частичные затмения могут происходит 2-5 раз в течение года для разных точек Земли. Полное Солнечное затмения для каждой конкретной точки планеты происходит очень редко.
Фото Солнечного затмения
Общая характеристика
Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.
С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.
Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.
По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!
Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.
Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).
Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.
Таблица “Основные физические характеристики Солнца”
Средний диаметр | 1 392 000 км |
Длина экватора | 4 370 000 км |
Масса | 1,9885•1030 кг (примерно 333 тысячи масс Земли) |
Площадь поверхности | 6 триллионов км² |
Объем | 1,41•1018 км³ |
Плотность | 1,409 г/м³ |
Температура на поверхности | 6000° С |
Температура в центре звезды | 15 700 000° С |
Период вращения вокруг своей оси (на экваторе) | 25,05 дней |
Период вращения вокруг своей оси (на полюсах) | 34,3 дня |
Наклон оси вращения к эклиптике | 7,25° |
Минимальное расстояние до Земли | 147 098 290 км |
Максимальное расстояние до Земли | 152 098 232 км |
Вторая космическая скорость | 617 км/с |
Ускорение свободного падения | 27,96g |
Светимость (мощность излучения) | 3,828•1026 Вт |
Решения
Перейти в тень
Попробуйте переместить объект съёмки в тень или, возможно, в помещение. Когда я спросил Стива Маккарри, автора знаменитой «Афганской девочки», как он работает в солнечный день, то он рассказал мне, что предпочитает снимать в помещениях, в которые жесткий солнечный свет проникает через окна, заметно смягчаясь. И это сильно изменило моё «виденье» жесткого света как возможности создавать прекрасные снимки в тени или в помещениях.
Попробуйте поставить ваш объект под углом 45 градусов к источнику света (например окну) и таким образом вы сможете создать красивый объём.
Снять силуэт
Устанавливайте экспозицию по фону, так что ваш объект выйдет силуэтом. В некоторых случаях это создает красивые кадры.
Вы можете это сделать используя ручной режим экспозиции (режим M), либо переключив режим измерения в точечный и оценивая экспозицию фона.
Выжигание фона – это не всегда плохо. Это может создать уникальные портреты, необычные и интересные.
Отражатель
Используя отражатель, вы можете уменьшить динамический диапазон за счет отражения света на объект, добавляющего свет в темные области. На фотографии ниже я использовал небольшой складной отражатель, который держал в руке во время съёмки этого кадра.
Подобно отражателю, вспышка добавляет больше света в темные области, что также уменьшает динамический диапазон.
HDR
Съёмка трёх (или более) кадров вашего объекта с использованием этой техники постобработки может оказаться очень кстати.
Я хочу поблагодарить Хардика Пандья и Линду Бёрнетт за их помощь в создании этой статьи.
Одед Вагенштейн – фотограф, путешественник и писатель. Он является постоянным автором израильской редакции журнала National Geographic Traveler и известен своими психологическими портретами людей разных культур. Вы можете присоединиться к его блогу портретной и туристской фотографии, продолжить разговор о путешествиях и фотосъемке людей, получить больше прекрасных советов!
Исследование Солнца
Космический зонд возле Солнца. Иллюстрация: NASA / Johns Hopkins APL / Steve Gribben
Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.
Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.
В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.
В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.
Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.
Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.